Longest common sequence - Dynamic programming
LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”, .. etc are subsequences of “abcdefg”. So a string of length n has 2^n different possible subsequences.
It is a classic computer science problem, the basis of diff (a file comparison program that outputs the differences between two files), and has applications in bioinformatics.
Examples:
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3. LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.
/* Dynamic Programming C/C++ implementation of LCS problem */
#include<bits/stdc++.h> int max( int a, int b); /* Returns length of LCS for X[0..m-1], Y[0..n-1] */ int lcs( char *X, char *Y, int m, int n ) { int L[m+1][n+1]; int i, j; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (i=0; i<=m; i++) { for (j=0; j<=n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X[i-1] == Y[j-1]) L[i][j] = L[i-1][j-1] + 1; else L[i][j] = max(L[i-1][j], L[i][j-1]); } } /* L[m][n] contains length of LCS for X[0..n-1] and Y[0..m-1] */ return L[m][n]; } /* Utility function to get max of 2 integers */ int max( int a, int b) { return (a > b)? a : b; } /* Driver program to test above function */ int main() { char X[] = "AGGTAB" ; char Y[] = "GXTXAYB" ; int m = strlen (X); int n = strlen (Y); printf ( "Length of LCS is %d\n" , lcs( X, Y, m, n ) ); return 0; } |
Comments
Post a Comment